This is how we can simplify expressions with exponents using the rules of exponents. The quotient rule of exponents allows us to simplify an expression that divides two numbers with the same base but different exponents. Solving equations mean finding the value of the unknown variable given. Use the distributive property to multiply any two polynomials. Using a calculator, we enter [latex]2,048\times 1,536\times 48\times 24\times 3,600[/latex] and press ENTER. 5/15 reduces to 1/3. simplify rational or radical expressions with our free step-by-step math calculator. First, we open the brackets, if any. . Solve - Simplifying exponent expressions calculator Solve Simplify Factor Expand Graph GCF LCM Solve an equation, inequality or a system. Volume & Surface Area of a Sphere | How to Find the Surface Area of a Sphere, System of Equations Word Problems & Explanations | How to Solve System of Equations Word Problems, Negative Signs and Simplifying Algebraic Expressions, SAT Subject Test Mathematics Level 2: Practice and Study Guide, GED Math: Quantitative, Arithmetic & Algebraic Problem Solving, CLEP College Algebra: Study Guide & Test Prep, Holt McDougal Algebra 2: Online Textbook Help, McDougal Littell Algebra 2: Online Textbook Help, Algebra II Curriculum Resource & Lesson Plans, Accuplacer Math: Quantitative Reasoning, Algebra, and Statistics Placement Test Study Guide, OSAT Middle Level/Intermediate Mathematics (CEOE) (125): Practice & Study Guide, Explorations in Core Math - Algebra 2: Online Textbook Help, Intermediate Algebra for College Students, NY Regents Exam - Algebra II: Test Prep & Practice, Create an account to start this course today. The cost of all 5 pencils = $5x. Exponentiation is a mathematical operation, written as an, involving the base a and an exponent n. In the case where n is a positive integer, exponentiation corresponds to repeated multiplication of the base, n times. All three are unlike terms, so it is the simplified form of the given expression. When you are working with a simplified expression, it is easier to see the underlying patterns and relationships that govern the equation. So, we will be solving the brackets first by multiplying x to the terms written inside. Now, let us learn how to use the distributive property to simplify expressions with fractions. Simplify radical,rational expression with Step The simplification calculator allows you to take a simple or complex expression and simplify and reduce the expression to it's simplest form. Keep in mind that simplification is not always possible, and sometimes an expression may be already in its simplest form. It requires one to be familiar with the concepts of arithmetic operations on algebraic expressions, fractions, and exponents. Simplify 2n(n2+3n+4) Using the Power Rule to Simplify Expressions With Exponents. Perform the division by canceling common factors. This gives us y^8-3. Math problems can be determined by using a variety of methods. Expressions can be rewritten using exponents to be simplified visually and mathematically. Simplify (m14n12)2(m2n3)12 So why waste time and energy struggling with complex algebraic expressions when the Simplify Expression Calculator can do the work for you? Some useful properties include: By using these properties, you can simplify complex expressions containing exponents. With this algebra simplifier, you can : Simplify an algebraic expression. Being able to simplify expressions not only makes solving equations easier, but it also helps to improve your understanding of math concepts and how they apply to real-world problems. Variables Any lowercase letter may be used as a variable. Mathematicians, scientists, and economists commonly encounter very large and very small numbers. Simplifying Exponents. By following these steps, you should be able to simplify most algebraic expressions. This is true for any nonzero real number, or any variable representing a real number. Then we simplify the terms containing exponents. Basic knowledge of algebraic expressions is required. lessons in math, English, science, history, and more. Volume of a Cone: Examples | How Do You Find the Volume of a Cone? Math is a subject that often confuses students. Groups Cheat . Consider the example [latex]\frac{{y}^{9}}{{y}^{5}}[/latex]. This is our answer simplified using positive exponents. Simplify The simplification calculator allows you to take a simple or complex expression and simplify and reduce the expression to it's simplest form. Well, 5 is positive, so we don't need to change it. The sole exception is the expression [latex]{0}^{0}[/latex]. The exponent rules chart that can be used for simplifying algebraic expressions is given below: To simplify this expression, let us first open the bracket by multiplying 4b to both the terms written inside. As, in India, schools are closed so this is a very helpful app also for learning and answering for anyone, at first, when I took pictures with the camera it didn't always work, I didn't receive the answer I was looking for, because this app is so useful and easily accessable, my teacher doesn't allow it but they don't know that it shows you how to solve the problem which I think is awesome. This calculator will solve your problems. Core connections geometry textbook answers, Equation of a line parallel to another line through a point calculator, Find the volume of the hemisphere quizizz, Find the zeros of the following polynomial calculator, Finding the 5th term in a sequence calculator, How to find critical values of a function, Non homogeneous second order differential equation solver, Precalculus graphical numerical algebraic seventh edition. The general rule to simplify expressions is PEMDAS - stands for Parentheses, Exponents, Multiplication, Division, Addition, Subtraction. While the "Fractional Exponents" calculator and "Solve for Exponents" calculator, assist those with a more advanced understanding of exponents. 9y + 3 4x 2y 3x 5. According to the order of operations, next we'll simplify any exponents. It is often simpler to work directly from the meaning of exponents. However, when simplifying expressions containing exponents, don't feel like you must work only with, or straight from, these rules. For example, to express x2, enter x^2. The result is that [latex]{x}^{3}\cdot {x}^{4}={x}^{3+4}={x}^{7}[/latex]. Simplifies expressions step-by-step and shows the work! All other trademarks and copyrights are the property of their respective owners. Simplify each expression using the zero exponent rule of exponents. A fully demonstrated steps by steps solution of a numerical (not a question), awesome makes life easy and has saved me an enormous amount of time the app is worth 20 dollars a month. We can always check that this is true by simplifying each exponential expression. Write answers with positive exponents. And if there is a number or variable written just outside the bracket, then multiply it with all the terms inside using the distributive property. Contains a great and useful calculator, this is one of the best apps relating to education no other app compares with this app it helped me to understand my work better it even shows how it was worked out I recommend to 7 of my friends and they are happy about this app. In a similar way to the product rule, we can simplify an expression such as \displaystyle \frac { {y}^ {m}} { {y}^ {n}} ynym, where \displaystyle m>n m > n. Therefore, the total cost of pencils bought by them = $5x + $6x = $11x. Sort by: Top Voted Questions Tips & Thanks Expression Equation Inequality Contact us Simplify Factor Expand GCF LCM Our users: I purchased the Personal Algebra Tutor (PAT). Also, the product and quotient rules and all of the rules we will look at soon hold for any integer [latex]n[/latex]. On the other hand, x/2 + 1/2y is in a simplified form as fractions are in the reduced form and both are unlike terms. (10^5=) The calculator should display the number 100,000, because that's equal to 10 5. We begin by using the associative and commutative properties of multiplication to regroup the factors. In other words, when dividing exponential expressions with the same base, we write the result with the common base and subtract the exponents. The simplification calculator allows you to take a simple or complex expression and simplify and reduce the expression to it's simplest form. Using b x b y = b x + y Simplify More ways to get app Simplify Calculator Since we have y ^8 divided by y ^3, we subtract their exponents. Suppose an exponential expression is raised to some power. Simplify Calculator. Along with PEMDAS, exponent rules, and the knowledge about operations on expressions also need to be used while simplifying algebraic expressions. . If you need help, we're here for you 24/7. It appears from the last two steps that we can use the power of a product rule as a power of a quotient rule. We find that [latex]{2}^{3}[/latex] is 8, [latex]{2}^{4}[/latex] is 16, and [latex]{2}^{7}[/latex] is 128. Understanding of terms with exponents and exponent rules. The simplification calculator allows you to take a simple or complex expression and simplify and reduce the expression to it's simplest form. For example, to express x2, enter x^2. If you're looking for a tutor who can help you with any subject, look no further than Instant Expert Tutoring. An error occurred trying to load this video. When they are, the basic rules of exponents and exponential notation apply when writing and simplifying algebraic expressions that contain exponents. When you are working with complex equations, it can be easy to get lost in the details and lose track of what you are trying to solve. Here is an example: 2x^2+x (4x+3) MathCelebrity.com's Simplify Radical Expressions Calculator - This calculator provides detailed . The calculator will then show you the simplified version of the expression, along with a step-by-step breakdown of the simplification process. Let's assume we are now not limited to whole numbers. This gives us y ^8-3. What does this mean? Step 2: Now click the button "Solve" to get the result. Try refreshing the page, or contact customer support. 42 is 16. simplify rational or radical expressions with our free step-by-step math First Law of Exponents If a and b are positive integers and x is a real number Deal with math question Math is a subject that often confuses students. We're almost done: 2 times p^(1-3) is -2, times q^(2-4), which is q^(-2) times r^9. By using these properties, you can simplify complex expressions containing logarithms. Use the zero exponent and other rules to simplify each expression. Therefore, x (6 x) x (3 x) = 3x. Therefore, 4ps - 2s - 3(ps +1) - 2s = ps - 4s - 3. We start at the beginning. Simplify expressions with positive exponents calculator - This Simplify expressions with positive exponents calculator helps to fast and easily solve any math. When one piece is missing, it can be difficult to see the whole picture. For any real number [latex]a[/latex] and natural numbers [latex]m[/latex] and [latex]n[/latex], the product rule of exponents states that. Simplify expressions with negative exponents calculator - Apps can be a great way to help learners with their math. In other words, when raising an exponential expression to a power, we write the result with the common base and the product of the exponents. MathHelp.com Simplifying Expressions Simplify a6 a5 The rules tell me to add the exponents. Go! Next, we separate them into multiplication: 16/8 times p/p^3 times q^2 / q^4 times r^9. This is amazing, it helped me so often already! Simplify Calculator Exponents are supported on variables using the ^ (caret) symbol. For example, can we simplify [latex]\frac{{h}^{3}}{{h}^{5}}[/latex]? Use properties of rational exponents to simplify the expression calculator - Practice your math skills and learn step by step with our math solver. Otherwise, the difference [latex]m-n[/latex] could be zero or negative. Simplifying radical expressions calculator This calculator simplifies expressions that contain radicals. Use exponent rules to simplify terms with exponents, if any. Flash cards are a fantastic and easy way to memorize topics, especially math properties. Welcome to our step-by-step math solver! Another useful result occurs if we relax the condition that [latex]m>n[/latex] in the quotient rule even further. Used with the function expand, the function simplify can expand and collapse a literal expression. [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}=\frac{{f}^{14}}{{e}^{14}}[/latex], [latex]\begin{array}{ccc}\hfill {\left({e}^{-2}{f}^{2}\right)}^{7}& =& {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7}\hfill \\ & =& \frac{{f}^{14}}{{e}^{14}}\hfill \end{array}[/latex], [latex]\begin{array}{ccc}\hfill {\left({e}^{-2}{f}^{2}\right)}^{7}& =& {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7}\hfill \\ & =& \frac{{\left({f}^{2}\right)}^{7}}{{\left({e}^{2}\right)}^{7}}\hfill \\ & =& \frac{{f}^{2\cdot 7}}{{e}^{2\cdot 7}}\hfill \\ & =& \frac{{f}^{14}}{{e}^{14}}\hfill \end{array}[/latex], [latex]{\left(\frac{a}{b}\right)}^{n}=\frac{{a}^{n}}{{b}^{n}}[/latex], CC licensed content, Specific attribution, http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2, http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@3.278:1/Preface, [latex]\left(3a\right)^{7}\cdot\left(3a\right)^{10} [/latex], [latex]\left(\left(3a\right)^{7}\right)^{10} [/latex], [latex]\left(3a\right)^{7\cdot10} [/latex], [latex]{\left(a\cdot b\right)}^{n}={a}^{n}\cdot {b}^{n}[/latex], [latex]\left(-3\right)^{5}\cdot \left(-3\right)[/latex], [latex]{x}^{2}\cdot {x}^{5}\cdot {x}^{3}[/latex], [latex]{t}^{5}\cdot {t}^{3}={t}^{5+3}={t}^{8}[/latex], [latex]{\left(-3\right)}^{5}\cdot \left(-3\right)={\left(-3\right)}^{5}\cdot {\left(-3\right)}^{1}={\left(-3\right)}^{5+1}={\left(-3\right)}^{6}[/latex], [latex]{\left(\frac{2}{y}\right)}^{4}\cdot \left(\frac{2}{y}\right)[/latex], [latex]{t}^{3}\cdot {t}^{6}\cdot {t}^{5}[/latex], [latex]{\left(\frac{2}{y}\right)}^{5}[/latex], [latex]\frac{{\left(-2\right)}^{14}}{{\left(-2\right)}^{9}}[/latex], [latex]\frac{{\left(z\sqrt{2}\right)}^{5}}{z\sqrt{2}}[/latex], [latex]\frac{{\left(-2\right)}^{14}}{{\left(-2\right)}^{9}}={\left(-2\right)}^{14 - 9}={\left(-2\right)}^{5}[/latex], [latex]\frac{{t}^{23}}{{t}^{15}}={t}^{23 - 15}={t}^{8}[/latex], [latex]\frac{{\left(z\sqrt{2}\right)}^{5}}{z\sqrt{2}}={\left(z\sqrt{2}\right)}^{5 - 1}={\left(z\sqrt{2}\right)}^{4}[/latex], [latex]\frac{{\left(-3\right)}^{6}}{-3}[/latex], [latex]\frac{{\left(e{f}^{2}\right)}^{5}}{{\left(e{f}^{2}\right)}^{3}}[/latex], [latex]{\left(e{f}^{2}\right)}^{2}[/latex], [latex]{\left({x}^{2}\right)}^{7}[/latex], [latex]{\left({\left(2t\right)}^{5}\right)}^{3}[/latex], [latex]{\left({\left(-3\right)}^{5}\right)}^{11}[/latex], [latex]{\left({x}^{2}\right)}^{7}={x}^{2\cdot 7}={x}^{14}[/latex], [latex]{\left({\left(2t\right)}^{5}\right)}^{3}={\left(2t\right)}^{5\cdot 3}={\left(2t\right)}^{15}[/latex], [latex]{\left({\left(-3\right)}^{5}\right)}^{11}={\left(-3\right)}^{5\cdot 11}={\left(-3\right)}^{55}[/latex], [latex]{\left({\left(3y\right)}^{8}\right)}^{3}[/latex], [latex]{\left({t}^{5}\right)}^{7}[/latex], [latex]{\left({\left(-g\right)}^{4}\right)}^{4}[/latex], [latex]\frac{{\left({j}^{2}k\right)}^{4}}{\left({j}^{2}k\right)\cdot {\left({j}^{2}k\right)}^{3}}[/latex], [latex]\frac{5{\left(r{s}^{2}\right)}^{2}}{{\left(r{s}^{2}\right)}^{2}}[/latex], [latex]\begin{array}\text{ }\frac{c^{3}}{c^{3}} \hfill& =c^{3-3} \\ \hfill& =c^{0} \\ \hfill& =1\end{array}[/latex], [latex]\begin{array}{ccc}\hfill \frac{-3{x}^{5}}{{x}^{5}}& =& -3\cdot \frac{{x}^{5}}{{x}^{5}}\hfill \\ & =& -3\cdot {x}^{5 - 5}\hfill \\ & =& -3\cdot {x}^{0}\hfill \\ & =& -3\cdot 1\hfill \\ & =& -3\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{{\left({j}^{2}k\right)}^{4}}{\left({j}^{2}k\right)\cdot {\left({j}^{2}k\right)}^{3}}& =& \frac{{\left({j}^{2}k\right)}^{4}}{{\left({j}^{2}k\right)}^{1+3}}\hfill & \text{Use the product rule in the denominator}.\hfill \\ & =& \frac{{\left({j}^{2}k\right)}^{4}}{{\left({j}^{2}k\right)}^{4}}\hfill & \text{Simplify}.\hfill \\ & =& {\left({j}^{2}k\right)}^{4 - 4}\hfill & \text{Use the quotient rule}.\hfill \\ & =& {\left({j}^{2}k\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 1& \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{5{\left(r{s}^{2}\right)}^{2}}{{\left(r{s}^{2}\right)}^{2}}& =& 5{\left(r{s}^{2}\right)}^{2 - 2}\hfill & \text{Use the quotient rule}.\hfill \\ & =& 5{\left(r{s}^{2}\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 5\cdot 1\hfill & \text{Use the zero exponent rule}.\hfill \\ & =& 5\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]\frac{{\left(d{e}^{2}\right)}^{11}}{2{\left(d{e}^{2}\right)}^{11}}[/latex], [latex]\frac{{w}^{4}\cdot {w}^{2}}{{w}^{6}}[/latex], [latex]\frac{{t}^{3}\cdot {t}^{4}}{{t}^{2}\cdot {t}^{5}}[/latex], [latex]\frac{{\theta }^{3}}{{\theta }^{10}}[/latex], [latex]\frac{{z}^{2}\cdot z}{{z}^{4}}[/latex], [latex]\frac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}[/latex], [latex]\frac{{\theta }^{3}}{{\theta }^{10}}={\theta }^{3 - 10}={\theta }^{-7}=\frac{1}{{\theta }^{7}}[/latex], [latex]\frac{{z}^{2}\cdot z}{{z}^{4}}=\frac{{z}^{2+1}}{{z}^{4}}=\frac{{z}^{3}}{{z}^{4}}={z}^{3 - 4}={z}^{-1}=\frac{1}{z}[/latex], [latex]\frac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}={\left(-5{t}^{3}\right)}^{4 - 8}={\left(-5{t}^{3}\right)}^{-4}=\frac{1}{{\left(-5{t}^{3}\right)}^{4}}[/latex], [latex]\frac{{\left(-3t\right)}^{2}}{{\left(-3t\right)}^{8}}[/latex], [latex]\frac{{f}^{47}}{{f}^{49}\cdot f}[/latex], [latex]\frac{1}{{\left(-3t\right)}^{6}}[/latex], [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}[/latex], [latex]\frac{-7z}{{\left(-7z\right)}^{5}}[/latex], [latex]{b}^{2}\cdot {b}^{-8}={b}^{2 - 8}={b}^{-6}=\frac{1}{{b}^{6}}[/latex], [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}={\left(-x\right)}^{5 - 5}={\left(-x\right)}^{0}=1[/latex], [latex]\frac{-7z}{{\left(-7z\right)}^{5}}=\frac{{\left(-7z\right)}^{1}}{{\left(-7z\right)}^{5}}={\left(-7z\right)}^{1 - 5}={\left(-7z\right)}^{-4}=\frac{1}{{\left(-7z\right)}^{4}}[/latex], [latex]\frac{{25}^{12}}{{25}^{13}}[/latex], [latex]{t}^{-5}=\frac{1}{{t}^{5}}[/latex], [latex]{\left(a{b}^{2}\right)}^{3}[/latex], [latex]{\left(-2{w}^{3}\right)}^{3}[/latex], [latex]\frac{1}{{\left(-7z\right)}^{4}}[/latex], [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}[/latex], [latex]{\left(a{b}^{2}\right)}^{3}={\left(a\right)}^{3}\cdot {\left({b}^{2}\right)}^{3}={a}^{1\cdot 3}\cdot {b}^{2\cdot 3}={a}^{3}{b}^{6}[/latex], [latex]2{t}^{15}={\left(2\right)}^{15}\cdot {\left(t\right)}^{15}={2}^{15}{t}^{15}=32,768{t}^{15}[/latex], [latex]{\left(-2{w}^{3}\right)}^{3}={\left(-2\right)}^{3}\cdot {\left({w}^{3}\right)}^{3}=-8\cdot {w}^{3\cdot 3}=-8{w}^{9}[/latex], [latex]\frac{1}{{\left(-7z\right)}^{4}}=\frac{1}{{\left(-7\right)}^{4}\cdot {\left(z\right)}^{4}}=\frac{1}{2,401{z}^{4}}[/latex], [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}={\left({e}^{-2}\right)}^{7}\cdot {\left({f}^{2}\right)}^{7}={e}^{-2\cdot 7}\cdot {f}^{2\cdot 7}={e}^{-14}{f}^{14}=\frac{{f}^{14}}{{e}^{14}}[/latex], [latex]{\left({g}^{2}{h}^{3}\right)}^{5}[/latex], [latex]{\left(-3{y}^{5}\right)}^{3}[/latex], [latex]\frac{1}{{\left({a}^{6}{b}^{7}\right)}^{3}}[/latex], [latex]{\left({r}^{3}{s}^{-2}\right)}^{4}[/latex], [latex]\frac{1}{{a}^{18}{b}^{21}}[/latex], [latex]{\left(\frac{4}{{z}^{11}}\right)}^{3}[/latex], [latex]{\left(\frac{p}{{q}^{3}}\right)}^{6}[/latex], [latex]{\left(\frac{-1}{{t}^{2}}\right)}^{27}[/latex], [latex]{\left({j}^{3}{k}^{-2}\right)}^{4}[/latex], [latex]{\left({m}^{-2}{n}^{-2}\right)}^{3}[/latex], [latex]{\left(\frac{4}{{z}^{11}}\right)}^{3}=\frac{{\left(4\right)}^{3}}{{\left({z}^{11}\right)}^{3}}=\frac{64}{{z}^{11\cdot 3}}=\frac{64}{{z}^{33}}[/latex], [latex]{\left(\frac{p}{{q}^{3}}\right)}^{6}=\frac{{\left(p\right)}^{6}}{{\left({q}^{3}\right)}^{6}}=\frac{{p}^{1\cdot 6}}{{q}^{3\cdot 6}}=\frac{{p}^{6}}{{q}^{18}}[/latex], [latex]{\\left(\frac{-1}{{t}^{2}}\\right)}^{27}=\frac{{\\left(-1\\right)}^{27}}{{\\left({t}^{2}\\right)}^{27}}=\frac{-1}{{t}^{2\cdot 27}}=\frac{-1}{{t}^{54}}=-\frac{1}{{t}^{54}}[/latex], [latex]{\left({j}^{3}{k}^{-2}\right)}^{4}={\left(\frac{{j}^{3}}{{k}^{2}}\right)}^{4}=\frac{{\left({j}^{3}\right)}^{4}}{{\left({k}^{2}\right)}^{4}}=\frac{{j}^{3\cdot 4}}{{k}^{2\cdot 4}}=\frac{{j}^{12}}{{k}^{8}}[/latex], [latex]{\left({m}^{-2}{n}^{-2}\right)}^{3}={\left(\frac{1}{{m}^{2}{n}^{2}}\right)}^{3}=\frac{{\left(1\right)}^{3}}{{\left({m}^{2}{n}^{2}\right)}^{3}}=\frac{1}{{\left({m}^{2}\right)}^{3}{\left({n}^{2}\right)}^{3}}=\frac{1}{{m}^{2\cdot 3}\cdot {n}^{2\cdot 3}}=\frac{1}{{m}^{6}{n}^{6}}[/latex], [latex]{\left(\frac{{b}^{5}}{c}\right)}^{3}[/latex], [latex]{\left(\frac{5}{{u}^{8}}\right)}^{4}[/latex], [latex]{\left(\frac{-1}{{w}^{3}}\right)}^{35}[/latex], [latex]{\left({p}^{-4}{q}^{3}\right)}^{8}[/latex], [latex]{\left({c}^{-5}{d}^{-3}\right)}^{4}[/latex], [latex]\frac{1}{{c}^{20}{d}^{12}}[/latex], [latex]{\left(6{m}^{2}{n}^{-1}\right)}^{3}[/latex], [latex]{17}^{5}\cdot {17}^{-4}\cdot {17}^{-3}[/latex], [latex]{\left(\frac{{u}^{-1}v}{{v}^{-1}}\right)}^{2}[/latex], [latex]\left(-2{a}^{3}{b}^{-1}\right)\left(5{a}^{-2}{b}^{2}\right)[/latex], [latex]{\left({x}^{2}\sqrt{2}\right)}^{4}{\left({x}^{2}\sqrt{2}\right)}^{-4}[/latex], [latex]\frac{{\left(3{w}^{2}\right)}^{5}}{{\left(6{w}^{-2}\right)}^{2}}[/latex], [latex]\begin{array}{cccc}\hfill {\left(6{m}^{2}{n}^{-1}\right)}^{3}& =& {\left(6\right)}^{3}{\left({m}^{2}\right)}^{3}{\left({n}^{-1}\right)}^{3}\hfill & \text{The power of a product rule}\hfill \\ & =& {6}^{3}{m}^{2\cdot 3}{n}^{-1\cdot 3}\hfill & \text{The power rule}\hfill \\ & =& \text{ }216{m}^{6}{n}^{-3}\hfill & \text{Simplify}.\hfill \\ & =& \frac{216{m}^{6}}{{n}^{3}}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {17}^{5}\cdot {17}^{-4}\cdot {17}^{-3}& =& {17}^{5 - 4-3}\hfill & \text{The product rule}\hfill \\ & =& {17}^{-2}\hfill & \text{Simplify}.\hfill \\ & =& \frac{1}{{17}^{2}}\text{ or }\frac{1}{289}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {\left(\frac{{u}^{-1}v}{{v}^{-1}}\right)}^{2}& =& \frac{{\left({u}^{-1}v\right)}^{2}}{{\left({v}^{-1}\right)}^{2}}\hfill & \text{The power of a quotient rule}\hfill \\ & =& \frac{{u}^{-2}{v}^{2}}{{v}^{-2}}\hfill & \text{The power of a product rule}\hfill \\ & =& {u}^{-2}{v}^{2-\left(-2\right)}& \text{The quotient rule}\hfill \\ & =& {u}^{-2}{v}^{4}\hfill & \text{Simplify}.\hfill \\ & =& \frac{{v}^{4}}{{u}^{2}}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \left(-2{a}^{3}{b}^{-1}\right)\left(5{a}^{-2}{b}^{2}\right)& =& -2\cdot 5\cdot {a}^{3}\cdot {a}^{-2}\cdot {b}^{-1}\cdot {b}^{2}\hfill & \text{Commutative and associative laws of multiplication}\hfill \\ & =& -10\cdot {a}^{3 - 2}\cdot {b}^{-1+2}\hfill & \text{The product rule}\hfill \\ & =& -10ab\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {\left({x}^{2}\sqrt{2}\right)}^{4}{\left({x}^{2}\sqrt{2}\right)}^{-4}& =& {\left({x}^{2}\sqrt{2}\right)}^{4 - 4}\hfill & \text{The product rule}\hfill \\ & =& \text{ }{\left({x}^{2}\sqrt{2}\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 1\hfill & \text{The zero exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{{\left(3{w}^{2}\right)}^{5}}{{\left(6{w}^{-2}\right)}^{2}}& =& \frac{{\left(3\right)}^{5}\cdot {\left({w}^{2}\right)}^{5}}{{\left(6\right)}^{2}\cdot {\left({w}^{-2}\right)}^{2}}\hfill & \text{The power of a product rule}\hfill \\ & =& \frac{{3}^{5}{w}^{2\cdot 5}}{{6}^{2}{w}^{-2\cdot 2}}\hfill & \text{The power rule}\hfill \\ & =& \frac{243{w}^{10}}{36{w}^{-4}}\hfill & \text{Simplify}.\hfill \\ & =& \frac{27{w}^{10-\left(-4\right)}}{4}\hfill & \text{The quotient rule and reduce fraction}\hfill \\ & =& \frac{27{w}^{14}}{4}\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]{\left(2u{v}^{-2}\right)}^{-3}[/latex], [latex]{x}^{8}\cdot {x}^{-12}\cdot x[/latex], [latex]{\left(\frac{{e}^{2}{f}^{-3}}{{f}^{-1}}\right)}^{2}[/latex], [latex]\left(9{r}^{-5}{s}^{3}\right)\left(3{r}^{6}{s}^{-4}\right)[/latex], [latex]{\left(\frac{4}{9}t{w}^{-2}\right)}^{-3}{\left(\frac{4}{9}t{w}^{-2}\right)}^{3}[/latex], [latex]\frac{{\left(2{h}^{2}k\right)}^{4}}{{\left(7{h}^{-1}{k}^{2}\right)}^{2}}[/latex]. Next step - look at each part individually. In this example, we simplify (2x)+48+3 (2x)+8. Example 3: Daniel bought 5 pencils each costing $x, and Victoria bought 6 pencils each costing $x. Then the result is multiplied three times because the entire expression has an exponent of 3. When [latex]m

Whitehurst Powell Funeral Home, Lane Frost Wife Kellie Kyle, Exemple Sujet Grand Oral Physique, Rare Bettinardi Putters, Articles H